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Variational principles for first-order wave functions 

P. D. ROBINSON 
Mathematics Department, University of York 
MS. receiged 9th September 1968 

Abstract. Complementary variational principles are developed for approximate 
solutions of the first-order Rayleigh-Schrodinger perturbation correction to the 
wave equation, yielding upper and lower bounds for the second-order energy correc- 
tion. The  upper bound is the same as Hylleraas’s; the complementary lower bound 
is related to Temple’s result for eigenvalues, and (unlike previous lower bounds) is 
shown to be unconditional. The  analysis extends to cover the first-order Brillouin- 
Wigner correction. As a by-product of the theory it is shown how the Rayleigh-Ritz 
upper bound and the Temple lower bound for eigenvalues arise in a complementary 
manner. 

1. Introduction 

of the first-order Rayleigh-Schrodinger perturbation correction 
In  recent years there has been considerable interest in approximate variational solutions 

for the ground state $Jo of a Hamiltonian h. The perturbation is V and the first two orders 
of correction to the unperturbed ground-state energy eo are 

where $Jo is normalized and Q = 4 is the exact solution of (1) (we assume real functions 
throughout for simplicity). 

Hylleraas (1930) was the first to exploit a variational principle to obtain approximate 
solutions of (1); his principle leads to an upper bound for E, (see also Sharma 1967) and is 
the basis of the so-called perturbation-variation method (see e.g. Scherr et al. 1966). 
Prager and Hirschfelder (1963, to be referred to as I) discuss a constrained principle which 
gives a lower bound for E,, while Arthurs and Robinson (1968, to be referred to as 11) have 
developed complementary variational principles which under certain circumstances yield 
simultaneous upper and lower bounds for E,. Neither of these lower-bound principles is 
really satisfactory, the Prager-Hirschfelder principle because of the inconvenient con- 
straint which a trial function must satisfy (this cannot be met at all in one-dimensional 
situations, see 11) and the Arthurs-Robinson principle because it is not usually clear a 
priori whether it will give a lower bound for E, at all. 

I n  the present paper, which is inspired by the work of Pomraning (196’7)) we give 
alternative complementary principles which provide a lower bound free from any re- 
strictions. As in 11, the upper bound is identical with that of Hylleraas. The new feature is 
the decomposition of the operator ( h - ~ , )  into the form 

@ - E o )  = ( E 1 - E o ) + ( h - E 1 )  ( 5 )  
where is the unperturbed first excited-state energy. As a by-product of the theory we 
see how the Rayleigh-Ritz upper bound and the Temple lower bound for eo arise in a 
complementary manner. 
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194 P. D. Robinson 

Some of the analysis extends to the Brillouin-Wigner equation 

(h - E)@ = (E,  - V)#, (6) 
which is similar to (1) but more difficult to deal with (Meath and Hirschfelder 1964). 

2. Basic theory 
It is convenient to consider an inhomogeneous equation of basic type 

( q + T + T ) @  = f (7) 
where q and f are functions of coordinates, T is a linear operator and Tt  is its adjoint 
defined by 

1 ( T + U ) @  dr  = U(T@) dr. (8) 

First we obtain the variational principles appropriate to (7) and then, in subsequent 
sections, we look at the different ways in which equations (1) and (7) can be identified with 
each other. 

The  procedure is to decompose (7)  into a pair of canonical Euler equations 

with generalized 'classical Hamiltonian' 
H = $U2-$qW+ @fa 

Then variation of the generalized 'action' functional 

S(@, U )  = / (U(T@)-H)dr  = /{ (T+U)@-H)dr  

round @ = 4 and U = U = T+ leads to complementary functionals 

G(@) = S(@, U(@))  = -$I ( -@(q+TtT)@+2@f}dr  

J ( U )  S ( @ ( U ) ,  U )  = - ~ / { ~ - 1 ~ 2 + + 2 + ( T t U - 2 f ) q - 1 ( T t U ) ~ d r  

which are stationary at (4, U )  with value 

S(+> U )  = -8 j 4fdr .  

The  functional G(@) depends on a trial function 0 with the corresponding U given by (9), 
whereas J(  U )  depends on a trial Li and @ obtained from (10). 

We note that 

G(@) - S(+, U )  = 8 (@ - $)(q + T t  T ) (@ - 4) d r  (16) 

(17) 

and 

S(4, U )  - J( U )  = 4 J ( U  - U ) (  1 + Tq- Tt)( U -  U )  dr. 

Thus 
(q+ T t T )  is positive definite e G 2 S 

and 
(1 + Tq-'Tt) is positive definite o S 2 J. (19) 
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So in order to obtain the complementary upper and lower bounds 

G(@) > S($, U )  2 J(U)  (20) 
it is necessary and sufficient that the operators (4+ T tT)  and (1 + Tq-ITt) be positive 
definite. I n  particular, we see that (20) holds if 

q > 0. 
The functional 

J( TO) = - 8 { q - I j 2  + q - I (  TTtO)2 + (0 - 24 - If)( T T W ) }  d r  

= G ( 0 ) - f j q - 1 { f - ( q + T t T ) O } 2 d r  (22) 

is slightly less general than (14), but is more convenient since it does not require a knowledge 
of the individual T and Tt.  

3. The Hylleraas upper bound for E2 
If we set 

f = (El - V $ o  
(4+ T 'T)  = ( h - ~ o )  

and 

so that equations (1) and (7) become the same, we find that 

and 
=($,U) = E2 

2G(@) = 1 { @ ( h - ~ ~ ) @  -2@(E, - V)+,} d r  = Hyl(@) (26) 

which is the Hylleraas functional. Since (h  - E ~ )  is positive definite it follows from (18) and 
(24) that 

Hyl(@) > E2. (27) 

4. Conditional lower bounds for E2 
Arthurs and Robinson (11) considered the situation when 

so that 
h =  -+o2+v 

(h-E, )  = - & d i v g r a d + ( u - ~ ~ )  

which is immediately identifiable with (24) when the choice of adjoint operators 

is made. In  this case 
T = 2-1'2 grad, T t  = - 2-1l2 div 

4 = (V-Eo)  

and in order that 2J( U) should provide a lower bound for E2 which is complementary to 
Hyl(@) it follows from (19) that the operator 

1 ++ grad(v div (32) 
should be positive definite. This condition depends crucially on the potential v ,  and 
evidently does not hold in general. 

Prager and Hirschfelder (I) use (28) to rewrite (1) as 

- rliv{+02 grad(@/#o)} = 2(E1 - (33) 
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which can actually be regarded as an example of (7) with for @ and 

q =  0. (34) 
In  this case the Hylleraas upper bound is still obtained (11), and the J functional always 
furnishes a lower bound since there is now no q-l term in (19). But from (10) we see that the 
trial function U is subject to the constraint 

T'U = f = 2(E, - V)$oz (35) 
which can be difficult to meet (11); in particular a trial 

U =  TO 
would not be allowed unless 0 provided the exact solution. 

5. Unconditional complementary bounds for El 
5.1. An unconditional lower bound 

bound Hyl(@), we employ the decomposition ( 5 )  and think of (1) in the form 
To obtain an unconditional lower bound for E, which is complementary to the upper 

( (€1  - € 0 )  + (h - 4@ = (El - V)$o (37) 
noting that: 

(i) the right-hand side of (37) is orthogonal to $o; 
(ii) the solution @ = 4 is not unique, for if 4 is a solution then so is 4 plus a constant 

multiple of 
Thus we may consider (37) as an equation on the domain Do orthogonal to $o, when it will 
have a unique solution 4. The operator (h-cl) is positive definite on Do and so we can set 

and 
(gl -eo) = q, a positive number 

(h-€1) = T'T 
(38) 

(39) 
without needing to know specifically the nature of T and T t ;  any positive definite, self- 
adjoint operator can be decomposed in such form (Mikhlin 1964). The  analysis of $92 
and 3 (equations (21), (22), (27)) now shows that 

H ~ I ( @ )  = j {@(h - Eo)@ - z@(E, - v)+,} dr  

2 E2 2 Hyl(O)- - 1 {(h -eo)@ - (E ,  - V)$o}2 dr .  (40) 
€1 -60  

It is evident that any $o component in 4 or in the trial functions @ and O would not con- 
tribute to any term in (40), and so the restriction that @, 0 E Do can be relaxed. 

In  practice, if el is not known precisely, it can always be replaced by any quantity y 
which satisfies 

5.2. Connections with Temple's formula 

bound formula states that 

€0 < y < €1. (41) 

If do and 8, are the two lowest eigenvalues of a Hamiltonian H, Temple's (1928) lower 

(42) 
SXH2X d r  - CSXHX drI2 

Ql -SXHX dr  
bo > 1 xHx d r  - 

provided that x is normalized and also assuming that 

j x ~ x  d r  < 8,. (43) 
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By taking 
H = h + V  

and expanding (42) in orders of V,  the lower bound in (40) can be derived from (42) (see I). 
However, our derivation shows that this lower bound holds independenth of the restriction 
(43) (or of any other restriction), and that it is complementary to the Hylleraas upper 
bound. 

An interesting by-product of the complementary bounds (40) is obtained by setting 
V = 0: we obtain 

@ ( h - ~ ~ ) @  dr  3 0 3 O ( ~ - E ~ ) ( E , - ~ ) @  dr .  s €1 - E o  
(47) 

The  left-hand member of (47) gives the Rayleigh-Ritz upper bound for c0,  and the right- 
hand member leads to Temple's lower bound for eo (cf. (42), with Go = eo,  x = @, H = h). 
Thus  me see how the Rayleigh-Ritz and Temple bounds for eo arise in a complementary 
manner. 

5.3.  Scaling and R i t x  procedures 
The complementary bounds (40) can always be improved by scaling (I) or Ritz pro- 

cedures because of their quadratic nature. The  resulting formulae are simplest if we 
expand 

m m 

@ = 2 an+n, 0 = 2 bn+n (48) 
n = l  n=l 

in terms of the normalized eigenfunctions 
coefficients an and bn yields 

of h. Optimization with respect to the 

where 

V n 0  = 1 +nVsLo dr. (50) 

More general formulae can be obtained with other basis sets. The  left-hand member of (49) 
is well known, and taking m = 1 on the right gives a result due to Dalgarno (1961). 
Goodisman (196'7) discusses various averaging processes which can be applied to similar 
formulae. 

5.4. Possible alternative lower bounds 
In  certain circumstances other ways of meeting the decomposition (24) may be possible. 

If there exists a self-adjoint operator L (which could be merely a function of coordinates) 
which is such that: 

(i) (h-L) is positive definite on D o ;  
(ii) ( L - E , )  is strictly positive on D o ;  
(iii) ( L - E , ) - ~  exists; 

then the decomposition 
L-EO = q 

would lead to the lower bound 
h-L  = T'T 
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(The analysis of 5 2 is readily modified to admit the possibility of q being an operator; 
care must be taken with the order of certain terms.) 

6. The Brillouin-Wigner equation 

I t  is customary to retain the definition (3) for E,, in which case we see from (6) that 
In  the Brillouin-Wigner equation (6), E is the energy of the total Hamiltonian (h + V). 

0 = j$o(El-V)$odr = J$,(h-E)@dr = (Eo-E)J$o@dr. (54) 

Thus, if now @ = C$ is the solution of (6), we have C$ E Do and also C$ is unique. Provided 
that 

then we can think of (6) in the form 
el > E ( 5 5 )  

(56) ((€1 - 4 + (h -4}@ = (E1 - V $ O  
and by an analogy with 4 5.1. obtain complementary upper and lower bounds for the 
second-order Brillouin-Wigner energy 

~ E(2) = 1 C#JV#~ dr. (57)  
With the condition 

imposed on the trial functions, the bounds are 
@,@ E Do 

{@(h-E)@+2@V$,)dr > E(2) 

r 1 r  

> J {@(h - E)@ + 2 0  V$,) dr  - - J {(h - E)@ - (E, - V)$o}2 dr. (59) €1-E 

The  formulae (49) are adapted to this situation if we replace eo by E and E2 by E(,).  In  
practice E may not be known exactly (unless from experiment), but it can play the role of a 
parameter to be adjusted iteratively (Meath and Hirschfelder 1964). 

7. Discussion 
We have derived complementary upper and lower bounds for E,, the second-order 

energy correction for ground states. The upper bound is the same as Hylleraas’s, and the 
lower bound is related to Temple’s lower bound for eigenvalues. We have shown that this 
lower bound is (unlike others) an unconditional one, and in that sense the result is new. 
The  closeness of these complementary bounds measures the accuracy of approximate 
solutions for the first-order wave-function correction. The  same functional form can be 
used as a trial solution for each bound, and the disposable parameters chosen to optimize 
each bound separately. If the optimum baunds are close, and the pairs of optimum 
parameter values are close, then the solution is a good one. 

As a simple illustrative example, consider the Stark effect for hydrogen where 

v = -%, E o  = -4, E, = 0. (60) 

(61) 

(62) 

(63 1 

$ - r - 1 / 2  e - r ,  
0 -  

Assuming that 

we obtain the bounds 
@ = , L J ~ - ~ / ~ ~ ~ - c Y ~  0 = Bx-1/2ze-4r 

-2.238 > E2 > -2.271 
with the optimum parameter values 

A = 1.310, U = 0.797; B = 1*455,/3 = 0.662. 
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T h e  exact result is 

It would be of interest to compare the lower bounds and corresponding 0’s with the 
Hylleraas upper bounds and W s  which have been used in various extensive calculations 
{cf. Scherr et al. 1966). 

The  results in this paper can be generalized to cover excited states (with suitable 
restrictions on the classes of trial functions, cf. Sharma 1967)) or extended to deal with 
higher-order corrections to the wave equation. 
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